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SUMMARY 
This paper compares the numerical solution of a linear system of hyperbolic partial differential equations 
in one and two space dimensions with the analytic solution. A two step Lax-Wendroff difference scheme 
is used in the interior region and various methods are used at the boundaries. The accuracy of the overall 
solution is tabulated for each of the boundary methods. Of particular interest here is the accuracy of the 
various boundary methods which are used. 

1. Introduction 

The motivation for this paper arose from consultation with civil engineers who were 
interested in mathematical modelling of estuary flows. The computational work arising 

in this field involves the solution of a system of nonlinear hyperbolic equations in one or 

two space dimensions and time. A great deal of  work has been done on the analysis of  
pure initial value problems involving hyperbolic systems, but the analysis of  initial-boundary 
value problems is not so well developed. Difference schemes often require more boundary 

conditions than the differential equations which they approximate and the inclusion of 
extra boundary conditions often leads to instabilities and inaccuracies. This type of problem 

is now attracting a great deal of  theoretical interest. For example, Koster [1] has studied a 
constant coefficient hyperbolic system in one space dimension and he has shown that if 

an extra boundary condition is applied to a component  of the solution corresponding to a 

characteristic curve directed away from the boundary then a certain type of instability will 
result. Roache [2] surveys methods for the numerical solution of partial differential equa- 
tions in finite regions with reference to fluid mechanics. 

The Fourier stability analysis which is used for initial value problems cannot, in general, 
be applied to initial-boundary value problems and one has to resort to energy methods or 
to normal mode analysis. Both methods are described in Richtmyer and Morton [3]. 
Kreiss [4] has extended the latter approach and, with others, he has examined various 
boundary conditions which might be used with some popular difference schemes. 

There is a dearth of  test computations on boundary techniques which might be useful 
to the non-specialists who find themselves involved in this type of work. Gourlay and 
Morris [5] have discussed some boundary adaptations of  an optimally stable scheme and 
they have presented some test computations on a two space dimensional problem. A recent 
paper by Chu and Sereny [6] describes some test calculations on one dimensional isentropic 
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flow of a polytropic gas. Various boundary techniques were used and comparisons were 
made in terms of accuracy. The stability of the methods used in this study has been 
established by Sundstrom [7]. 

The present paper describes a series of test computations in one and two space dimen- 
sions. The two step L-W method is used in the interior region and, in the case of the 
2 dimensional problem, the optimally stable rotated Richtmyer variety is used as described 
by Wilson [8]. The objective is to compare the accuracy of the overall solution using various 
modes of approximation at the boundaries. Boundary approximations are used which 
have been found to be stable, but no stability analysis is presented. For  the interior region 
the stability analysis is found in [3]. At the boundaries the stability is not analysed, but 
when characteristics or their derivatives are used the stability conditions for the charac- 
teristics are not violated. This paper is not an attempt to find the best method for solving 
the one and two dimensional wave equations. These equations are used because they are 
the simplest equations with positive and negative characteristic slopes and their analytic 
solutions are easily derived. The approach of this paper is empirical rather than theoretical 
and it is intended to give the non-specialist some idea of the best boundary method to use 

and the accuracy to expect. 

2. Boundary conditions 

A linear, constant coefficient hyperbolic system in one space dimension may be written 

in the form 

OU OU 
- -  + A - -  = C ,  ( 2 . 1 )  

St ~?x 

where U = U(x, t) is an n-vector and A is a constant n x n matrix. Hyperbolicity implies 
that A has n real eigenvalues and a complete set of linearly independent eigenvectors. 
There exists a non-singular matrix P such that P A P - 1  = D, where D is a diagonal matrix 
having eigenvalues of A as elements. Suppose that the first r diagonal elements of D are 
non-positive and the remaining n -  r are positive. The transformation V = P U  enables 
equation (2.1) to be written as n decoupled scalar equations 

--Ot + 2j ~ = [PC]j, (2.2) 

where2j  < 0 f o r  j =  1 , 2 , . . . , r a n d 2 j > 0 f o r j = r + l , r + 2 , . . . , n .  
Suppose now that the given system is being solved between the boundaries x = 0 and 

x = 1. On the left hand boundary the quantities Vj, j = 1, 2 . . . . .  r may be obtained by 
integrating along the characteristics dx/dt = ,~j which are directed towards that boundary 
from the interior region. The remaining n -  r quantities have to be specified on x = 0, 
or given in terms of Vj, j = t, 2 . . . .  , r. Thus, on x = 0, the analytic boundary conditions 

will have the form 

V(2)(0, t) = RoV(1)(0, t) + go(t), (2.3) 

where V ~ represents the first r components of V and V (2) represents the remaining n - r 
components. Ro is an (n - r) x r matrix and go(t) is an (n - r) vector. In summary, on the 
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boundary x = 0 towards which r characteristics are directed, r quantities may be calculated 

using these characteristics and n -  r boundary conditions have to be supplied. The latter 
must be in a form which enables the remaining n - r elements of V to be calculated. An 
analogous situation holds on the boundary at x = 1. 

I f  A = A(x, t) the situation is very similar to that described above. The essential bound- 
ary conditions at a boundary point are determined by the orientation of the characteristics 

at that point. An ideal numerical method for dealing with boundaries will in some sense ap- 
proximate the analytic boundary situation. 

A linear hyperbolic system in two space dimensions may be written as 

8U 8U 8U 
- - +  A - - + B - - = C  (2.4) 
at ax ay 

On a boundary x = constant, n - r conditions are needed if A has r negative eigenvalues 

and the system is being solved in the region which lies on the positive side of  this boundary. 
As in the one dimensional case, a "good"  approximate method will make use of this in- 
formation. 

3. Description of test problems 

For the one dimensional test problem we chose to solve the constant coefficient wave equa- 
tion 

a2u a2u 
- -  e 2 -  (3.1) 

at 2 ax 2 

in the region 0 < x < 1, t > 0, with u(x, t) subject to the boundary conditions 

u(0, t) = u(1, t) = 0 for t > 0, 

and the initial conditions 

8u 
u=0 .05cos2zcx ,  - - = 0  for t = 0  and 0 < x < l .  

at 

Detailed difference equations for this case are not given but may be derived from the two 
dimensional case described below on neglecting the y coordinate. 

For  the two dimensional test problem we considered the solution of 

c2(a  &2 \ ax 2 + 8y2 / (3.2) 

in - l < x <  1, 0 < y <  1, t > 0 ,  with u(x,y,t)  subject to the initial conditions 
u = sin ~x sin roy, au/at = 0 at t = 0 throughout the domain of the problem and with 
u = 0 on the boundary of this domain for all time. The symmetry of the problem in the 
x direction is used and the solution of equation (3.2) is computed in the region 0 < x < 1, 
0 < y _<_ 1. The analytic solution of this latter problem is 

u(x, y, t) = sin 7rx sin roy cos x/2 eTrt. (3.3) 
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Prior to considering the numerical solution of (3.2) we write the equation in the form 

~U 8U ~U 
- -  + A - - + B - - = 0 ,  (3.4) 

8t 8x 8y 

where 

U =  U1 

U3 

~- c~u - 
m 
8t 

CTx 

_ O y _  

, A =  0 - c  0 

- c  0 0 

0 0 0 

and B = 0 0 - c  

0 0 0 

--C 

When expressed in conservation form equation (3.4) becomes 

0 0 

o u  o 8 
- - +  + 0 F(V) G(U) = 
8t 

where f r = [ - c U 2 ,  - c U 1 ,  O] and G r = [ - c U 3 ,  O, - c U 1 ] .  

The initial conditions are 

Ut(x ,  y,  O) = O, I 

[ U2(x, y,  O) = crc cos ~rx sin Try, 

and U3(x, y ,  O) = cz~ sin 7zx cos ~zy. j 

The boundary conditions on U may be written as 

U ~ =  U 3 = O  on x =  1 

and 

U~ = U  2 = 0  on y = 0  a n d y = l .  

Also, U2 is an even function of x whilst U1 and U 3 are odd functions of x. 

(3.5) 

(3.6) 

(3.7) 

4. Numerical solution 

The numerical solution is calculated on a mesh ( j A x ,  k A y )  where j, k are integers and 
0 < j < 20, 0 < k < 20. The solution at the interior points is obtained by considering the 
conservation equation (3.5) and using a 2 step Lax-Wendroff difference scheme accurate to 
second order. The particular variation used is the rotated Richtmyer scheme described by 

Wilson [8]. The two solution steps may be written as 

U,+~ 1 , , , A t  , , 
j+ {-,k+�89 = 4 ( g  j, k ~- U j+ l ,k  dy U j ,k+ l -~- U~+l,k+l ) ---4~X ( F  J+ l 'k+ l + F j+ l 'k  

At 
" " T y(Gj, k+l Gj+ ,k+l- G ,k " - -  F j ,  k +  1 - -  Fj,  k) -- , + " _ Gj+a,k),  (4.1) 
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Xj,k+ 1 x j+l, k+l 

j-~,k+~ 

• x j+l,k 

@ j-{,k-~ @ j+{ ,k-{ 

@ INTERMEDIATE PLANE POINTS 

Figure 1. Mesh points for interior difference scheme. 

j,k = Uj, k - - ~ ( F j + { , k + ~  -t" Fj++,k-~----j-�89 j -{ .k-{J  

At 
r ~"+{ "+~ - ~ " + ~  ~ ( 4 . 2 )  2Ay \ v J - � 8 9  + vJ+�89189 -- GJ+�89189 u J - � 8 9 1 8 9  

where U,~,k denotes the approximation to U at time t. at point (j, k) and where the mesh 
points are as shown in Figure 1. If  Ax = Ay then the stability condition for this optimally 
stable scheme is the Courant-Friedrichs-Lewy (CFL) condition c(A t/Ax) < 1. Intermediate 
solution points on the plane t = t.+~ = t. + �89 are calculated at ( - �89  kay)  using the 
symmetry of  the problem so that the mesh points along the y axis can be treated as interior 
mesh points. At the physical boundaries the various methods used are summarised below 
and labelled for future reference. 

A) Analytic boundary method 

The analytic solution is substituted at the boundary and the errors arising from the interior 
numerical approximation are monitored. 

B) Zero order extrapolation boundary method 

The value of a dependent variable at a boundary node is set equal to the value of that vari- 
able at the nearest interior node on the same time step. 

C) Characteristic boundary method 

(i) One dimension. 
The characteristics in the one dimensional problem are dx/dt = + c and the compatibility 
conditions are 

dU 1 dU 2 dx 
dt dt = 0  on dt = c (4.2) 
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t:t+ ,t  ;I"",,\CIIAffACTERISTIC,, ~ =-c 

t:t • 
Xo X~XX, Xz 

Figure 2. Characteristic for 1D at the boundary. 

/ / / ' [ ' , ' ,{  

Figure 3. Characteristics for 2D. 

and 

dU1 dU 2 dx 
- - + - - = 0  o n - - =  - c ,  (4.3) 

dt dt dt 

where d/dt denotes a total time derivative. On the boundary x = 0 the first component  of U 
is zero since u(0, t) = 0 and a method is required which will enable Uz to be computed. As 

suggested in Section 2, the boundary solution is obtained using the characteristics dx/dt = 
= - c  which are directed towards the boundary from the region x > 0. Thus, for the left 

hand boundary we use 

UI(x o, t + At) - Ul(x3, t) + U2(xo, t + At) - Uz(X3, t) = 0, 

which is a difference approximation to equation (4.3) in the notation of Figure 2. Since 

Ul(x o, t + At) = 0 ~his becomes 

U2(x0, t + At) = U2(x3, t) + U~(xa, t). (4.4) 

The values of  U1 and U2 at the point x3 are calculated using quadratic interpolation over 
the points x0, x~ and x2. The condition c(At/Ax) < 1, which is necessary for the stability 
of  the L - W  solution in the interior region, will ensure that the negative characteristic through 

(Xo, t + A t) will meet time t between Xo and x~. 

(ii) Two dimensions. 
The characteristics boundary method used in the two dimensional problem is that de- 
scribed by Butler [9]. In Figure 3 the point 0 is at time t + At and the set of points 1, 2, 3, 
4 and 5 is at time t: approximations to variables at a point in the set may be obtained using 
quadratic interpolation over nodes at time t. Note that time t here coincides with time t, 
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referred to in equations (4.1) and (4.2). The single infinity of bicharacteristic directions through 
the point 0 is expressed by 

dx = ccosOdt, dy = csin Odt, (4.5) 

where 0 < 0 < 2=. The compatibility condition along a bicharacteristic given in Butler 
[91 is 

dU 1 0 dUg dU 3 ~ U2 - -  - cos - sin 0 - -  = c sin z 0 - -  
dt dt dt 8x 

( ~U2 OU3 ~ ~3Ua (4.6) - c s i n 0 c o s 0 \ ~ +  Ox i + c c ~  20 8~- '  

where d/dt denotes total differentiation along the direction given by (4.5). The bicharacter- 
istic 0 through the point 0 will meet the plane at time t at one of the points 1, 2, 3 or 4 if 
0 is selected appropriately. For example, 0 = 0 corresponds to a bicharacteristic through 
the point 1 and the segment of the bicharacteristic between times t and t + A t has top point 
0 and bottom point 1. To approximate equation (4.6), a total derivative dUjd t  (i = 1, 2, 3) 
is replaced by (U~(top) - Ui(bottom))/At and the right hand side of the equation is re- 
placed by the mean of the values at the top and bottom of the bicharacteristic. 

In addition to the characteristic cone defined by (4.5) there is the degenerate cone dx = 

= dy = 0 on which we have the compatibility relation dUt/dt = c(t3Uz/Sx + 6qU3/6qy ). 
This characteristic is not required, however, in solving at boundary points in the chosen 
problem. 

Referring to Figure 3, the boundary will pass through the points 0,5 and either 1 and 3 
or 2 and 4. The unknown dependent variable at the boundary is calculated using the bi- 
characteristic with top at 0, bottom in the solution region, and whose projection on the 
plane t = constant is perpendicular to the boundary. Along the boundary x = 1 the ap- 
propriate bicharacteristic is given by 0 = 0 and the compatibility condition becomes 

dU1 dU 2 OU 3 
. . . .  c -  (4.7) 

dt dt 8y 

At the poin t j  in Figure 3 the value of U~ is denoted by (U~)~ so the difference approximation 
to equation (4.7) becomes 

At 
(U1)o  - -  ( U I ) I  - (U2)o  '}- ( U 2 ) l  = e T [(U3,y)O -1- ( U 3 , y ) l ] ,  ,4.8) 

where U3,y denotes OU3/~y. Point 0 is on the boundary where U1 = U3 = 0 and equation 
(4.8) gives 

( U 2 )  0 --- ( U 2 )  1 --  ( U 1 )  1 --  ~.(U3,y)l  

where 2 = cA t/2. 
Similarly at the other boundaries: 

y = 0, (U3)o = (U3)4 + (U~), + )-(U2,x)4, 

y = 1, (U3)o = (U3)2 - (Ua)2 - );(U2,x)2. 

(4.9) 

(4.10) 

(4.11) 
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Figure 4. Conservation at a boundary. 

The evaluation of quantities at points such as 1, 2, 3 or 4 in Figure 3 may be described 
by considering point t adjacent to a boundary through points 2, 5 and 4. Approximations 
to dU,/Oy at internal nodes may be obtained, when required, by the use of central differ- 
ences in the y direction. Approximations to U, or OUJOy at point 1 are obtained, as in the 
one dimensional case, using quadratic interpolation over point 5 and the two nodes to the 
left of 5 on the line through 1 and 5. Again, as in the one dimensional case, the stability 
condition imposed in the interior region will be an essential condition for stability of the 

boundary method. 

D) Conservation boundary method 

Integrating equation (3.5) over any area S in the x - y  plane we have 

fs UdS = - fsF,#S - fsa,#s .  (4.12) 

For  the boundary at x = 1 we use the mesh in Figure 4 where the crosses are at time t,, 
and the dots are at the intermediate time t.+r Take S to be the rectangle 1, 4, 5, 6 and let 
A U denote an approximation to the change in U at any point in S during the time interval 
from t. to t.+r Evaluating the integrals on the right hand side of (4.12) at time t., we have 

[; f; f; ] At P dy - F" dy - G" dx + G" dx , 
A U = 2 A x A y  

where S~ F"dy, for example, denotes the line integral o f F  along the straight line from point 6 
to point 1 at time t,. If  the integrals are approximated using the trapezoidal rule this be- 

comes 

At At , , ,, 
A U =  - 4A--~ [F~ + F~ - F~ - F'5'] - - ~ y  [G1 + G ,  - Gs  - G~] (4.14) 
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in the obvious notation. Using the average value of U over the four corners of S at t, as 
an approximation to U~, we now obtain U"v +~ = �88 + U~ + U~ + U~) + AU, which 
of course, is the value given by the first step of the L-W scheme (4.1) for the approximation 
at the intermediate point 7. If 1 , z(U1 + U~) is used as an approximation to Us we may 
write 

un8+ 4z 1 n = ~(U1 + U~) + AU, 

gTn+�89 and tr,+~ may be expressed in terms of the computed value -'7 ' " 8  a s  

u n + ~ }  l-Tn+{ 1 n n n __ s = ' ~ v  + ~ ( U I + U 6 - U ,  U~). (4.15) 

Similarly 

u n + ~  i r n + ~  1 n n n _  U n 
9 : "" 10 - [ ' - ~ ( U  1 -Jr- U 2 - U 3 4) .  (4.16) 

Approximations are now obtainable at points 7, 8, 9 and 10 at time t,+~ and we may apply 
the conservation concept described above over the rectangle defined by these points be- 
tween times t, and t,+ 1. Evaluating the fluxes F and G at time t,+_~, we find 

A t  n+ ~ l~n+~ lgn+~ lgn+~] 
v ]  + = U - - J ; [ e =  + - - - 

At 

2Ay 9 + ~ 1 0  ~ 7  - -  G ~ + { ]  �9 (4.17) 

The other boundaries are treated in an analogous manner. 

In applying the above method the external boundary conditions may be used at inter- 
mediate boundary points such as 8 or 9 and only the unknown components of U computed 
(I), or the complete vector U may be computed using (4.15) and (4.16) (II), Both (I) and 
(II) have been used in the comparative study which is under consideration here. It should 
be noted that the boundary methods derived in this section have only first order accuracy 
and are therefore less accurate than the method used in the interior. 

E) Semi-characteristic boundary method 

This method uses the theory of characteristics, but a finite difference scheme is used rather 
than an integration along the characteristics. If  in equation (3.4)--repeated as equation 
(4.18) for convenience-- 

8U ~U ~U 
+ A~77_ - + B ~ 7 -  = 0 (4.18) 

0~ o x  oy 

we regard the term B 8U/Sy as an inhomogeneous term in an equation involving x and t 
derivatives only then the system may be uncoupled as in the one dimensional case. Let P 
be the square matrix which we introduced in Section 2 having its ith row equal to a left 
eigenvector corresponding to the ith eigenvalue of A. The choice 
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p =_ 1 1 

0 0 

1 - 1  

iigivesP1 0 i - 0 
-- -- 2 _ 

and 

P A P  -1  = D = - - c  

0 

0 

0 . 

0 

Pre-multiplying equation (4.18) by P and putting V r = (V 1, V2, 1/3) = P U  we find 

a v  a v  av  
- -  + D + P B P - 1  - O, 
at ~xx ay 

(4.19) 

where 

P B P -  a = 

i m 

0 - c  0 

c 0 c 

2 2 

0 - c  0 

Now consider the boundary x = 1 where the conditions U 1 = U3 = 0 imply that 
V2 = 0 and V~ = -Va.  In the format of equation (2.3) we may write the conditions at 

x = 1 as [1/1] = [0 -1][V2, V3] r. As suggested in Section 2, V2 and V3 are obtained by 

integrating along the non-negative characteristics and V1 is then given by the equation 

above. The condition 1/2 = U3 = 0 has arisen, of course, from a trivial integration along 

the characteristic which lies on the boundary x = 1 and we must now use the outwardly 

directed positive characteristic to solve for Va. At the boundary x = 1 we therefore use 

the third component of (4.19) 

av3 av3 av2 
- -  + c - c = O, (4.20) 

at ax @ 

where 1/1 = Us + U2, Vz = U3 and I/3 = U1 - Uz. We propose to evaluate the "inhomo- 
geneous" term c(aV2/ay)  at the boundary point at time tn+ ~ (Figure 5) and since V z ~- 0 

on the boundary this term vanishes and (4.20) becomes 

av~ av3 
- -  + c - - -  = 0 .  ( 4 . 2 1 )  

at ax 

In the extension of this method to the general nonlinear situation the eigenvalue c and the 
inhomogeneous term would be evaluated at the boundary point. In our constant coefficient 

linear problem equation (4.21) is similar to the one dimensional characteristics equation. 

Forward differences are used for the time derivative and a one sided second order difference 
scheme is used for the space derivative. The one sided difference scheme can be used at the 
boundary since the mesh points used are on the same side of the boundary as the character- 

istic associated with equation (4.21). 
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2 1 x 

t /v 
k 

Figure 5. Semi-characteristic methods at a boundary. 

A typical mesh at the boundary x = 1 is given in Figure 5. An initial estimate for [V3]~ + t 
is obtained using 

eAt 
[V31~+ x = [Val ~ + -- J" (4.22) 

2Ax 

where 

Jr" = 4[V3]~ - 3[V3]~ - [V3] ~. (4.23) 

A more accurate value is then obtained using 

cat 
[V3]~ +a = [V3]g + ~ [J" + j ,+ l ]  (4.24) 

where J '+ 1 is given by equation (4.23) with n replaced by n + 1. The internal mesh points 
must be calculated before the boundary points. For a nonlinear system the analogue of  
(4.24) would be used iteratively until successive iterates agreed to the required accuracy. 
Coefficients would be evaluated by averaging over the boundary points at t, and t,+ 1. For 
the constant coefficient problem under discussion, however, no iteration is required. A 
similar method is used for the boundaries at y = 0,1 on replacing the eigenvalues and eigen- 
vectors of A by those for B. For  the one dimensional case the equations are completely un- 
coupled and either the y dependence in equation (4.19) is ignored or an equation similar to 
(2.2) is used. 

5. Discussion of results 

The numerical solution to the ID problem is computed using 21 mesh points in the interval 
0 < x < 1 and the results are tabulated in Table 1. 

The numerical solution to the 2D problem is computed using 21 x 21 mesh points in 
the region 0 < x < 1, 0 < y < 1 for up to 100 time steps, 34 time cycles or 4.75 seconds 
and the results are tabulated in Table 2. The difference in computing time between the 
methods is negligible, 100 steps taking about 235 seconds of central processor time on an 
ICL 1904S. 

The zero order extrapolation at the boundaries gives better results in 1D and 2D than 
was expected from this very crude method. Using this method for the 2D problem the re- 
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TABLE 1 

Maximum absolute errors for the one dimensional problem 

J. S. Bramley and D. M.  Sloan 

Boundary method Maximum absolute error 

40 time steps 100 time steps 

Interior Boundary Interior Boundary 

A Analytic 1.9 �9 10 -4 0 2.5 * 10 -4 0 

B Zero extrapolate 5.9 * 10 -a 6.0 �9 10 -a 2.6 * 10 -3 2 . 6 . 1 0  -3 

C Characteristics 6 .7 ,  10 -4 6.7 �9 10 -4 2.0* 10 -a 2.1 �9 10 -3 

D Conservation I 7.2 �9 10 -4 7.2 * 10-4 2.2 * 10 -3 2.2 * 10 -3 

II 5.6 �9 10 -3 4.9 * 10 -3 1.7 * 10 -2 1.2 * 10 -2 

E Semi-characteristics 4.5 * 10 -4 4.3 �9 10 -4 1.0 * 10 -4 9.7 * 10 -4 

TABLE 2 

Maximum absolute errors for the two dimensional problem 

Boundary method Maximum absolute error 

40 steps 100 steps 
(1.3 time cycles) (3.4 time cycles) 

Interior B o u n d a r y  Interior Boundary 

A Analytic 3.1 * 10 -2 0 3.4* 10 -2 0 

B Zero extrapolation 0.1 0.12 0.27 0.27 

C Characteristics 6.1 * 10 -2 5.7 * 10 -2 0.14 0.14 

D Conservation I 6 .6 ,10  -2 6.6 * 10 -2 0.16 0.16 

II 0.42 2.1 �9 10 -2 

E Semi-characteristics 6.2* 10 -2 6.0* 10 -2 0.15 0.14 

sul ts  in T a b l e  2 h a v e  U1 = 0 o n  all the  b o u n d a r i e s  a n d  U2 = 0 o n  y = 0,1 a n d  U3 = 0 on  

x = + 1, b u t  the  resu l t s  a re  s o m e w h a t  be t t e r  i f  Ua = 0 is t he  on ly  b o u n d a r y  c o n d i t i o n .  

U s i n g  c o n s e r v a t i o n  t h e o r y  at  t he  b o u n d a r y  o f  the  2D p r o b l e m ,  i f  the  i n t e r m e d i a t e  va lues  

a re  t a k e n  f r o m  the  b o u n d a r y  c o n d i t i o n s  t h e n  the  s o l u t i o n  is fa r  m o r e  a c c u r a t e  t h a n  w h e n  

the  i n t e r m e d i a t e  resul ts  a re  ca lcu la ted .  T h e  s a m e  is a lso  t rue  f o r  t he  1D p r o b l e m .  
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Results seem to indicate that the boundary method which should be used with a second 

order Lax-Wendroff interior method should be based on an approximation of the charac- 

teristics at the boundary. The characteristic method analogous to that described by Butler 

[9] seems to be one of the best boundary methods. The semi-characteristic method de- 

scribed in the paper seems to retain many of the advantages of a characteristics method 

and, of course, it is much easier to implement. One might expect that this method would be 

an ideal method to use in conjunction with the 2-step Leap Frog method, described in 

Richtmyer and Morton [3]. Employing three time levels, an explicit boundary method could 
be constructed having second order accuracy in space and time. 

This paper discusses various boundary methods and tests them on a linear equation. 

Nonlinear equations and boundaries with re-entrant corners will give the boundary meth- 
ods a more realistic test and the authors hope to do this in the future. 
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